

ASCII CONTROL CHARACTERS

The following list shows the ASCII codes generated when a control key combination is pressed.
The mnemonics and descriptions refer to ASCII functions used for screen and printer formatting
and data communications.

ALT-KEY COMBINATIONS

The following hexadecimal scan codes are produced by holding down
the ALT key and pressing each character:

ASCII
Code* Ctrl- Mnemonic Description

ASCII
Code* Ctrl- Mnemonic Description

00 NUL Null character 10 Ctrl-P DLE Data link escape

01 Ctrl-A SOH Start of header 11 Ctrl-Q DC1 Device control 1

02 Ctrl-B STX Start of text 12 Ctrl-R DC2 Device control 2

03 Ctrl-C ETX End of text 13 Ctrl-S DC3 Device control 3

04 Ctrl-D EOT End of transmission 14 Ctrl-T DC4 Device control 4

05 Ctrl-E ENQ Enquiry 15 Ctrl-U NAK Negative acknowledge

06 Ctrl-F ACK Acknowledge 16 Ctrl-V SYN Synchronous idle

07 Ctrl-G BEL Bell 17 Ctrl-W ETB End transmission block

08 Ctrl-H BS Backspace 18 Ctrl-X CAN Cancel

09 Ctrl-I HT Horizontal tab 19 Ctrl-Y EM End of medium

0A Ctrl-J LF Line feed 1A Ctrl-Z SUB Substitute

0B Ctrl-K VT Vertical tab 1B Ctrl-I ESC Escape

0C Ctrl-L FF Form feed 1C Ctrl-\ FS File separator

0D Ctrl-M CR Carriage return 1D Ctrl-] GS Group separator

0E Ctrl-N SO Shift out 1E Ctrl- ^ RS Record separator

0F Ctrl-O SI Shift in 1F Ctrl-† US Unit separator

* ASCII codes are in hexadecimal.

†

ASCII code 1Fh is Ctrl-Hyphen (-).

Key Scan Code Key Scan Code Key Scan Code

1 78 A 1E N 31

2 79 B 30 O 18

3 7A C 2E P 19

4 7B D 20 Q 10

5 7C E 12 R 13

6 7D F 21 S 1F

7 7E G 22 T 14

8 7F H 23 U 16

9 80 I 17 V 2F

0 81 J 24 W 11

Ϫ

 82 K 25 X 2D

ϭ

 83 L 26 Y 15

 M 32 Z 2C

KEYBOARD SCAN CODES

The following keyboard scan codes may be retrieved either by calling INT 16h or by calling
INT 21h for keyboard input a second time (the first keyboard read returns 0). All codes are in
hexadecimal:

FUNCTION KEYS

Key Normal
With
Shift

With
Ctrl With Alt

F1 3B 54 5E 68

F2 3C 55 5F 69

F3 3D 56 60 6A

F4 3E 57 61 6B

F5 3F 58 62 6C

F6 40 59 63 6D

F7 41 5A 64 6E

F8 42 5B 65 6F

F9 43 5C 66 70

F10 44 5D 67 71

F11 85 87 89 8B

F12 86 88 8A 8C

Key Alone
With
Ctrl Key

Home 47 77

End 4F 75

PgUp 49 84

PgDn 51 76

PrtSc 37 72

Left arrow 4B 73

Rt arrow 4D 74

Up arrow 48 8D

Dn arrow 50 91

Ins 52 92

Del 53 93

Back tab 0F 94

Gray + 4E 90

Gray

−

 4A 8E

Assembly Language for
x86 Processors

Seventh Edition

KIP R. IRVINE

Florida International University
School of Computing and Information Sciences

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Vice President and Editorial Director, ECS: Marcia Horton
Executive Editor: Tracy Johnson
Executive Marketing Manager: Tim Galligan
Marketing Assistant: Jon Bryant
Program Management Team Lead: Scott Disanno
Program Manager: Clare Romeo
Project Manager: Greg Dulles
Senior Operations Specialist: Nick Sklitsis
Operations Specialist: Linda Sager
Permissions Project Manager: Karen Sanatar
Full-Service Project Management: Pavithra Jayapaul, Jouve
Printer/Binder: Courier/Westford
Typeface: Times

IA-32, Pentium, i486, Intel64, Celeron, and Intel 386 are trademarks of Intel Corporation. Athlon, Phenom, and Opteron
are trademarks of Advanced Micro Devices. TASM and Turbo Debugger are trademarks of Borland International.
Microsoft Assembler (MASM), Windows Vista, Windows 7, Windows NT, Windows Me, Windows 95, Windows 98,
Windows 2000, Windows XP, MS-Windows, PowerPoint, Win32, DEBUG, WinDbg, MS-DOS, Visual Studio, Visual
C++, and CodeView are registered trademarks of Microsoft Corporation. Autocad is a trademark of Autodesk. Java is a
trademark of Sun Microsystems. PartitionMagic is a trademark of Symantec. All other trademarks or product names are
the property of their respective owners.

Copyright © 2015, 2011, 2007, 2003 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458. All rights
reserved. Manufactured in the United States of America. This publication is protected by Copyright and permissions
should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use
materials from this work, please submit a written request to Pearson Higher Education, Permissions Department, 1 Lake
Street, Upper Saddle River, NJ 07458.

Previously published as Assembly Language for Intel-Based Computers.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and pub-
lisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in
connection with, or arising out of, the furnishing, performance, or use of these programs.

Library of Congress Cataloging-in-Publication Data

Irvine, Kip R., 1951-
Assembly language for x86 processors / Kip R. Irvine, Florida International University,
School of Computing and Information Sciences. — Seventh Edition.

pages cm
ISBN-13: 978-0-13-376940-1
ISBN-10: 0-13-376940-2

1. IBM microcomputers–Programming. 2. X86 assembly language (Computer program
language) I. Title.

QA76.8.I77 2014
005.265—dc23 2013046432

10 9 8 7 6 5 4 3 2 1

ISBN-13: 978-0-13-376940-1

ISBN-10: 0-13-376940-2

To Jack and Candy Irvine

This page intentionally left blank

v

Contents
Preface xxiii

1 Basic Concepts 1
1.1 Welcome to Assembly Language 1

1.1.1 Questions You Might Ask 3
1.1.2 Assembly Language Applications 6
1.1.3 Section Review 6

1.2 Virtual Machine Concept 7
1.2.1 Section Review 9

1.3 Data Representation 9
1.3.1 Binary Integers 10
1.3.2 Binary Addition 12
1.3.3 Integer Storage Sizes 13
1.3.4 Hexadecimal Integers 13
1.3.5 Hexadecimal Addition 15
1.3.6 Signed Binary Integers 16
1.3.7 Binary Subtraction 18
1.3.8 Character Storage 19
1.3.9 Section Review 21

1.4 Boolean Expressions 22
1.4.1 Truth Tables for Boolean Functions 24
1.4.2 Section Review 26

1.5 Chapter Summary 26

1.6 Key Terms 27

1.7 Review Questions and Exercises 28
1.7.1 Short Answer 28
1.7.2 Algorithm Workbench 30

2 x86 Processor Architecture 32
2.1 General Concepts 33

2.1.1 Basic Microcomputer Design 33
2.1.2 Instruction Execution Cycle 34

vi Contents

2.1.3 Reading from Memory 36
2.1.4 Loading and Executing a Program 36
2.1.5 Section Review 37

2.2 32-Bit x86 Processors 37
2.2.1 Modes of Operation 37
2.2.2 Basic Execution Environment 38
2.2.3 x86 Memory Management 41
2.2.4 Section Review 42

2.3 64-Bit x86-64 Processors 42
2.3.1 64-Bit Operation Modes 43
2.3.2 Basic 64-Bit Execution Environment 43

2.4 Components of a Typical x86 Computer 44
2.4.1 Motherboard 44
2.4.2 Memory 46
2.4.3 Section Review 46

2.5 Input–Output System 47
2.5.1 Levels of I/O Access 47
2.5.2 Section Review 49

2.6 Chapter Summary 50

2.7 Key Terms 51

2.8 Review Questions 52

3 Assembly Language Fundamentals 53
3.1 Basic Language Elements 54

3.1.1 First Assembly Language Program 54
3.1.2 Integer Literals 55
3.1.3 Constant Integer Expressions 56
3.1.4 Real Number Literals 57
3.1.5 Character Literals 57
3.1.6 String Literals 58
3.1.7 Reserved Words 58
3.1.8 Identifiers 58
3.1.9 Directives 59
3.1.10 Instructions 60
3.1.11 Section Review 63

3.2 Example: Adding and Subtracting Integers 63
3.2.1 The AddTwo Program 63
3.2.2 Running and Debugging the AddTwo Program 65
3.2.3 Program Template 70
3.2.4 Section Review 70

Contents vii

3.3 Assembling, Linking, and Running Programs 71
3.3.1 The Assemble-Link-Execute Cycle 71
3.3.2 Listing File 71
3.3.3 Section Review 73

3.4 Defining Data 74
3.4.1 Intrinsic Data Types 74
3.4.2 Data Definition Statement 74
3.4.3 Adding a Variable to the AddTwo Program 75
3.4.4 Defining BYTE and SBYTE Data 76
3.4.5 Defining WORD and SWORD Data 78
3.4.6 Defining DWORD and SDWORD Data 79
3.4.7 Defining QWORD Data 79
3.4.8 Defining Packed BCD (TBYTE) Data 80
3.4.9 Defining Floating-Point Types 81
3.4.10 A Program That Adds Variables 81
3.4.11 Little-Endian Order 82
3.4.12 Declaring Uninitialized Data 83
3.4.13 Section Review 83

3.5 Symbolic Constants 84
3.5.1 Equal-Sign Directive 84
3.5.2 Calculating the Sizes of Arrays and Strings 85
3.5.3 EQU Directive 86
3.5.4 TEXTEQU Directive 87
3.5.5 Section Review 88

3.6 64-Bit Programming 88

3.7 Chapter Summary 90

3.8 Key Terms 91
3.8.1 Terms 91
3.8.2 Instructions, Operators, and Directives 92

3.9 Review Questions and Exercises 92
3.9.1 Short Answer 92
3.9.2 Algorithm Workbench 93

3.10 Programming Exercises 94

4 Data Transfers, Addressing, and
Arithmetic 95

4.1 Data Transfer Instructions 96
4.1.1 Introduction 96
4.1.2 Operand Types 96
4.1.3 Direct Memory Operands 96

viii Contents

4.1.4 MOV Instruction 98
4.1.5 Zero/Sign Extension of Integers 99
4.1.6 LAHF and SAHF Instructions 101
4.1.7 XCHG Instruction 102
4.1.8 Direct-Offset Operands 102
4.1.9 Example Program (Moves) 103
4.1.10 Section Review 104

4.2 Addition and Subtraction 105
4.2.1 INC and DEC Instructions 105
4.2.2 ADD Instruction 105
4.2.3 SUB Instruction 106
4.2.4 NEG Instruction 106
4.2.5 Implementing Arithmetic Expressions 106
4.2.6 Flags Affected by Addition and Subtraction 107
4.2.7 Example Program (AddSubTest) 111
4.2.8 Section Review 112

4.3 Data-Related Operators and Directives 112
4.3.1 OFFSET Operator 112
4.3.2 ALIGN Directive 113
4.3.3 PTR Operator 114
4.3.4 TYPE Operator 115
4.3.5 LENGTHOF Operator 116
4.3.6 SIZEOF Operator 116
4.3.7 LABEL Directive 116
4.3.8 Section Review 117

4.4 Indirect Addressing 117
4.4.1 Indirect Operands 117
4.4.2 Arrays 118
4.4.3 Indexed Operands 119
4.4.4 Pointers 121
4.4.5 Section Review 122

4.5 JMP and LOOP Instructions 123
4.5.1 JMP Instruction 123
4.5.2 LOOP Instruction 124
4.5.3 Displaying an Array in the Visual Studio Debugger 125
4.5.4 Summing an Integer Array 126
4.5.5 Copying a String 127
4.5.6 Section Review 128

4.6 64-Bit Programming 128
4.6.1 MOV Instruction 128
4.6.2 64-Bit Version of SumArray 130
4.6.3 Addition and Subtraction 130
4.6.4 Section Review 131

Contents ix

4.7 Chapter Summary 132

4.8 Key Terms 133
4.8.1 Terms 133
4.8.2 Instructions, Operators, and Directives 133

4.9 Review Questions and Exercises 134
4.9.1 Short Answer 134
4.9.2 Algorithm Workbench 136

4.10 Programming Exercises 137

5 Procedures 139
5.1 Stack Operations 140

5.1.1 Runtime Stack (32-bit mode) 140
5.1.2 PUSH and POP Instructions 142
5.1.3 Section Review 145

5.2 Defining and Using Procedures 145
5.2.1 PROC Directive 145
5.2.2 CALL and RET Instructions 147
5.2.3 Nested Procedure Calls 148
5.2.4 Passing Register Arguments to Procedures 150
5.2.5 Example: Summing an Integer Array 150
5.2.6 Saving and Restoring Registers 152
5.2.7 Section Review 153

5.3 Linking to an External Library 153
5.3.1 Background Information 154
5.3.2 Section Review 155

5.4 The Irvine32 Library 155
5.4.1 Motivation for Creating the Library 155
5.4.2 Overview 157
5.4.3 Individual Procedure Descriptions 158
5.4.4 Library Test Programs 170
5.4.5 Section Review 178

5.5 64-Bit Assembly Programming 178
5.5.1 The Irvine64 Library 178
5.5.2 Calling 64-Bit Subroutines 179
5.5.3 The x64 Calling Convention 179
5.5.4 Sample Program that Calls a Procedure 180

5.6 Chapter Summary 182

5.7 Key Terms 183
5.7.1 Terms 183
5.7.2 Instructions, Operators, and Directives 183

x Contents

5.8 Review Questions and Exercises 183
5.8.1 Short Answer 183
5.8.2 Algorithm Workbench 186

5.9 Programming Exercises 187

6 Conditional Processing 189
6.1 Conditional Branching 190

6.2 Boolean and Comparison Instructions 190
6.2.1 The CPU Status Flags 191
6.2.2 AND Instruction 191
6.2.3 OR Instruction 192
6.2.4 Bit-Mapped Sets 194
6.2.5 XOR Instruction 195
6.2.6 NOT Instruction 196
6.2.7 TEST Instruction 196
6.2.8 CMP Instruction 197
6.2.9 Setting and Clearing Individual CPU Flags 198
6.2.10 Boolean Instructions in 64-Bit Mode 199
6.2.11 Section Review 199

6.3 Conditional Jumps 199
6.3.1 Conditional Structures 199
6.3.2 Jcond Instruction 200
6.3.3 Types of Conditional Jump Instructions 201
6.3.4 Conditional Jump Applications 204
6.3.5 Section Review 208

6.4 Conditional Loop Instructions 209
6.4.1 LOOPZ and LOOPE Instructions 209
6.4.2 LOOPNZ and LOOPNE Instructions 209
6.4.3 Section Review 210

6.5 Conditional Structures 210
6.5.1 Block-Structured IF Statements 210
6.5.2 Compound Expressions 213
6.5.3 WHILE Loops 214
6.5.4 Table-Driven Selection 216
6.5.5 Section Review 219

6.6 Application: Finite-State Machines 219
6.6.1 Validating an Input String 219
6.6.2 Validating a Signed Integer 220
6.6.3 Section Review 224

6.7 Conditional Control Flow Directives 225
6.7.1 Creating IF Statements 226
6.7.2 Signed and Unsigned Comparisons 227
6.7.3 Compound Expressions 228
6.7.4 Creating Loops with .REPEAT and .WHILE 231

Contents xi

6.8 Chapter Summary 232

6.9 Key Terms 233
6.9.1 Terms 233
6.9.2 Instructions, Operators, and Directives 234

6.10 Review Questions and Exercises 234
6.10.1 Short Answer 234
6.10.2 Algorithm Workbench 236

6.11 Programming Exercises 237
6.11.1 Suggestions for Testing Your Code 237
6.11.2 Exercise Descriptions 238

7 Integer Arithmetic 242
7.1 Shift and Rotate Instructions 243

7.1.1 Logical Shifts and Arithmetic Shifts 243
7.1.2 SHL Instruction 244
7.1.3 SHR Instruction 245
7.1.4 SAL and SAR Instructions 246
7.1.5 ROL Instruction 247
7.1.6 ROR Instruction 247
7.1.7 RCL and RCR Instructions 248
7.1.8 Signed Overflow 249
7.1.9 SHLD/SHRD Instructions 249
7.1.10 Section Review 251

7.2 Shift and Rotate Applications 251
7.2.1 Shifting Multiple Doublewords 252
7.2.2 Binary Multiplication 253
7.2.3 Displaying Binary Bits 254
7.2.4 Extracting File Date Fields 254
7.2.5 Section Review 255

7.3 Multiplication and Division Instructions 255
7.3.1 MUL Instruction 255
7.3.2 IMUL Instruction 257
7.3.3 Measuring Program Execution Times 260
7.3.4 DIV Instruction 262
7.3.5 Signed Integer Division 264
7.3.6 Implementing Arithmetic Expressions 267
7.3.7 Section Review 269

7.4 Extended Addition and Subtraction 269
7.4.1 ADC Instruction 269
7.4.2 Extended Addition Example 270
7.4.3 SBB Instruction 272
7.4.4 Section Review 272

xii Contents

7.5 ASCII and Unpacked Decimal Arithmetic 273
7.5.1 AAA Instruction 274
7.5.2 AAS Instruction 276
7.5.3 AAM Instruction 276
7.5.4 AAD Instruction 276
7.5.5 Section Review 277

7.6 Packed Decimal Arithmetic 277
7.6.1 DAA Instruction 277
7.6.2 DAS Instruction 279
7.6.3 Section Review 279

7.7 Chapter Summary 279

7.8 Key Terms 280
7.8.1 Terms 280
7.8.2 Instructions, Operators, and Directives 280

7.9 Review Questions and Exercises 281
7.9.1 Short Answer 281
7.9.2 Algorithm Workbench 282

7.10 Programming Exercises 284

8 Advanced Procedures 286
8.1 Introduction 287

8.2 Stack Frames 287
8.2.1 Stack Parameters 288
8.2.2 Disadvantages of Register Parameters 288
8.2.3 Accessing Stack Parameters 290
8.2.4 32-Bit Calling Conventions 293
8.2.5 Local Variables 295
8.2.6 Reference Parameters 297
8.2.7 LEA Instruction 298
8.2.8 ENTER and LEAVE Instructions 298
8.2.9 LOCAL Directive 300
8.2.10 The Microsoft x64 Calling Convention 301
8.2.11 Section Review 302

8.3 Recursion 302
8.3.1 Recursively Calculating a Sum 303
8.3.2 Calculating a Factorial 304
8.3.3 Section Review 311

8.4 INVOKE, ADDR, PROC, and PROTO 311
8.4.1 INVOKE Directive 311
8.4.2 ADDR Operator 312
8.4.3 PROC Directive 313
8.4.4 PROTO Directive 316

Contents xiii

8.4.5 Parameter Classifications 319
8.4.6 Example: Exchanging Two Integers 320
8.4.7 Debugging Tips 321
8.4.8 WriteStackFrame Procedure 322
8.4.9 Section Review 323

8.5 Creating Multimodule Programs 323
8.5.1 Hiding and Exporting Procedure Names 323
8.5.2 Calling External Procedures 324
8.5.3 Using Variables and Symbols across Module Boundaries 325
8.5.4 Example: ArraySum Program 326
8.5.5 Creating the Modules Using Extern 326
8.5.6 Creating the Modules Using INVOKE and PROTO 330
8.5.7 Section Review 333

8.6 Advanced Use of Parameters (Optional Topic) 333
8.6.1 Stack Affected by the USES Operator 333
8.6.2 Passing 8-Bit and 16-Bit Arguments on the Stack 335
8.6.3 Passing 64-Bit Arguments 336
8.6.4 Non-Doubleword Local Variables 337

8.7 Java Bytecodes (Optional Topic) 339
8.7.1 Java Virtual Machine 339
8.7.2 Instruction Set 340
8.7.3 Java Disassembly Examples 341
8.7.4 Example: Conditional Branch 344

8.8 Chapter Summary 346

8.9 Key Terms 347
8.9.1 Terms 347
8.9.2 Instructions, Operators, and Directives 348

8.10 Review Questions and Exercises 348
8.10.1 Short Answer 348
8.10.2 Algorithm Workbench 348

8.11 Programming Exercises 349

9 Strings and Arrays 352
9.1 Introduction 352

9.2 String Primitive Instructions 353
9.2.1 MOVSB, MOVSW, and MOVSD 354
9.2.2 CMPSB, CMPSW, and CMPSD 355
9.2.3 SCASB, SCASW, and SCASD 356
9.2.4 STOSB, STOSW, and STOSD 356
9.2.5 LODSB, LODSW, and LODSD 356
9.2.6 Section Review 357

xiv Contents

9.3 Selected String Procedures 357
9.3.1 Str_compare Procedure 358
9.3.2 Str_length Procedure 359
9.3.3 Str_copy Procedure 359
9.3.4 Str_trim Procedure 360
9.3.5 Str_ucase Procedure 363
9.3.6 String Library Demo Program 364
9.3.7 String Procedures in the Irvine64 Library 365
9.3.8 Section Review 368

9.4 Two-Dimensional Arrays 368
9.4.1 Ordering of Rows and Columns 368
9.4.2 Base-Index Operands 369
9.4.3 Base-Index-Displacement Operands 371
9.4.4 Base-Index Operands in 64-Bit Mode 372
9.4.5 Section Review 373

9.5 Searching and Sorting Integer Arrays 373
9.5.1 Bubble Sort 373
9.5.2 Binary Search 375
9.5.3 Section Review 382

9.6 Java Bytecodes: String Processing (Optional Topic) 382

9.7 Chapter Summary 383

9.8 Key Terms and Instructions 384

9.9 Review Questions and Exercises 384
9.9.1 Short Answer 384
9.9.2 Algorithm Workbench 385

9.10 Programming Exercises 386

10 Structures and Macros 390
10.1 Structures 390

10.1.1 Defining Structures 391
10.1.2 Declaring Structure Variables 393
10.1.3 Referencing Structure Variables 394
10.1.4 Example: Displaying the System Time 397
10.1.5 Structures Containing Structures 399
10.1.6 Example: Drunkard’s Walk 399
10.1.7 Declaring and Using Unions 403
10.1.8 Section Review 405

10.2 Macros 405
10.2.1 Overview 405
10.2.2 Defining Macros 406
10.2.3 Invoking Macros 407

Contents xv

10.2.4 Additional Macro Features 408
10.2.5 Using the Book’s Macro Library (32-bit mode only) 412
10.2.6 Example Program: Wrappers 419
10.2.7 Section Review 420

10.3 Conditional-Assembly Directives 420
10.3.1 Checking for Missing Arguments 421
10.3.2 Default Argument Initializers 422
10.3.3 Boolean Expressions 423
10.3.4 IF, ELSE, and ENDIF Directives 423
10.3.5 The IFIDN and IFIDNI Directives 424
10.3.6 Example: Summing a Matrix Row 425
10.3.7 Special Operators 428
10.3.8 Macro Functions 431
10.3.9 Section Review 433

10.4 Defining Repeat Blocks 433
10.4.1 WHILE Directive 433
10.4.2 REPEAT Directive 434
10.4.3 FOR Directive 434
10.4.4 FORC Directive 435
10.4.5 Example: Linked List 436
10.4.6 Section Review 437

10.5 Chapter Summary 438

10.6 Key Terms 439
10.6.1 Terms 439
10.6.2 Operators and Directives 439

10.7 Review Questions and Exercises 440
10.7.1 Short Answer 440
10.7.2 Algorithm Workbench 440

10.8 Programming Exercises 442

11 MS-Windows Programming 445
11.1 Win32 Console Programming 445

11.1.1 Background Information 446
11.1.2 Win32 Console Functions 450
11.1.3 Displaying a Message Box 452
11.1.4 Console Input 455
11.1.5 Console Output 461
11.1.6 Reading and Writing Files 463
11.1.7 File I/O in the Irvine32 Library 468
11.1.8 Testing the File I/O Procedures 470
11.1.9 Console Window Manipulation 473
11.1.10 Controlling the Cursor 476

xvi Contents

11.1.11 Controlling the Text Color 477
11.1.12 Time and Date Functions 479
11.1.13 Using the 64-Bit Windows API 482
11.1.14 Section Review 484

11.2 Writing a Graphical Windows Application 484
11.2.1 Necessary Structures 484
11.2.2 The MessageBox Function 486
11.2.3 The WinMain Procedure 486
11.2.4 The WinProc Procedure 487
11.2.5 The ErrorHandler Procedure 488
11.2.6 Program Listing 488
11.2.7 Section Review 492

11.3 Dynamic Memory Allocation 492
11.3.1 HeapTest Programs 496
11.3.2 Section Review 499

11.4 x86 Memory Management 499
11.4.1 Linear Addresses 500
11.4.2 Page Translation 503
11.4.3 Section Review 505

11.5 Chapter Summary 505

11.6 Key Terms 507

11.7 Review Questions and Exercises 507
11.7.1 Short Answer 507
11.7.2 Algorithm Workbench 508

11.8 Programming Exercises 509

12 Floating-Point Processing and Instruction
Encoding 511

12.1 Floating-Point Binary Representation 511
12.1.1 IEEE Binary Floating-Point Representation 512
12.1.2 The Exponent 514
12.1.3 Normalized Binary Floating-Point Numbers 514
12.1.4 Creating the IEEE Representation 514
12.1.5 Converting Decimal Fractions to Binary Reals 516
12.1.6 Section Review 518

12.2 Floating-Point Unit 518
12.2.1 FPU Register Stack 519
12.2.2 Rounding 521
12.2.3 Floating-Point Exceptions 523
12.2.4 Floating-Point Instruction Set 523

Contents xvii

12.2.5 Arithmetic Instructions 526
12.2.6 Comparing Floating-Point Values 530
12.2.7 Reading and Writing Floating-Point Values 533
12.2.8 Exception Synchronization 534
12.2.9 Code Examples 535
12.2.10 Mixed-Mode Arithmetic 537
12.2.11 Masking and Unmasking Exceptions 538
12.2.12 Section Review 539

12.3 x86 Instruction Encoding 539
12.3.1 Instruction Format 540
12.3.2 Single-Byte Instructions 541
12.3.3 Move Immediate to Register 541
12.3.4 Register-Mode Instructions 542
12.3.5 Processor Operand-Size Prefix 543
12.3.6 Memory-Mode Instructions 544
12.3.7 Section Review 547

12.4 Chapter Summary 547

12.5 Key Terms 549

12.6 Review Questions and Exercises 549
12.6.1 Short Answer 549
12.6.2 Algorithm Workbench 550

12.7 Programming Exercises 551

13 High-Level Language Interface 555
13.1 Introduction 555

13.1.1 General Conventions 556
13.1.2 .MODEL Directive 557
13.1.3 Examining Compiler-Generated Code 559
13.1.4 Section Review 564

13.2 Inline Assembly Code 564
13.2.1 __asm Directive in Visual C++ 564
13.2.2 File Encryption Example 566
13.2.3 Section Review 569

13.3 Linking 32-Bit Assembly Language Code to C/C++ 570
13.3.1 IndexOf Example 570
13.3.2 Calling C and C++ Functions 574
13.3.3 Multiplication Table Example 576
13.3.4 Calling C Library Functions 579
13.3.5 Directory Listing Program 582
13.3.6 Section Review 583

xviii Contents

13.4 Chapter Summary 583

13.5 Key Terms 584

13.6 Review Questions 584

13.7 Programming Exercises 585

Chapters are available from the Companion Web site

14 16-Bit MS-DOS Programming 14.1
14.1 MS-DOS and the IBM-PC 14.1

14.1.1 Memory Organization 14.2
14.1.2 Redirecting Input-Output 14.3
14.1.3 Software Interrupts 14.4
14.1.4 INT Instruction 14.5
14.1.5 Coding for 16-Bit Programs 14.6
14.1.6 Section Review 14.7

14.2 MS-DOS Function Calls (INT 21h) 14.7
14.2.1 Selected Output Functions 14.9
14.2.2 Hello World Program Example 14.11
14.2.3 Selected Input Functions 14.12
14.2.4 Date/Time Functions 14.16
14.2.5 Section Review 14.20

14.3 Standard MS-DOS File I/O Services 14.20
14.3.1 Create or Open File (716Ch) 14.22
14.3.2 Close File Handle (3Eh) 14.23
14.3.3 Move File Pointer (42h) 14.23
14.3.4 Get File Creation Date and Time 14.24
14.3.5 Selected Library Procedures 14.24
14.3.6 Example: Read and Copy a Text File 14.25
14.3.7 Reading the MS-DOS Command Tail 14.27
14.3.8 Example: Creating a Binary File 14.30
14.3.9 Section Review 14.33

14.4 Chapter Summary 14.33

14.5 Programming Exercises 14.35

15 Disk Fundamentals 15.1
15.1 Disk Storage Systems 15.1

15.1.1 Tracks, Cylinders, and Sectors 15.2
15.1.2 Disk Partitions (Volumes) 15.4
15.1.3 Section Review 15.4

Contents xix

15.2 File Systems 15.5
15.2.1 FAT12 15.6
15.2.2 FAT16 15.6
15.2.3 FAT32 15.6
15.2.4 NTFS 15.7
15.2.5 Primary Disk Areas 15.7
15.2.6 Section Review 15.8

15.3 Disk Directory 15.9
15.3.1 MS-DOS Directory Structure 15.10
15.3.2 Long Filenames in MS-Windows 15.12
15.3.3 File Allocation Table (FAT) 15.14
15.3.4 Section Review 15.14

15.4 Reading and Writing Disk Sectors 15.15
15.4.1 Sector Display Program 15.16
15.4.2 Section Review 15.19

15.5 System-Level File Functions 15.20
15.5.1 Get Disk Free Space (7303h) 15.20
15.5.2 Create Subdirectory (39h) 15.23
15.5.3 Remove Subdirectory (3Ah) 15.23
15.5.4 Set Current Directory (3Bh) 15.23
15.5.5 Get Current Directory (47h) 15.24
15.5.6 Get and Set File Attributes (7143h) 15.24
15.5.7 Section Review 15.25

15.6 Chapter Summary 15.25

15.7 Programming Exercises 15.26

16 BIOS-Level Programming 16.1
16.1 Introduction 16.1

16.1.1 BIOS Data Area 16.2

16.2 Keyboard Input with INT 16h 16.3
16.2.1 How the Keyboard Works 16.3
16.2.2 INT 16h Functions 16.4
16.2.3 Section Review 16.8

16.3 VIDEO Programming with INT 10h 16.8
16.3.1 Basic Background 16.8
16.3.2 Controlling the Color 16.10
16.3.3 INT 10h Video Functions 16.12
16.3.4 Library Procedure Examples 16.22
16.3.5 Section Review 16.23

xx Contents

16.4 Drawing Graphics Using INT 10h 16.23
16.4.1 INT 10h Pixel-Related Functions 16.24
16.4.2 DrawLine Program 16.25
16.4.3 Cartesian Coordinates Program 16.27
16.4.4 Converting Cartesian Coordinates to Screen Coordinates 16.29
16.4.5 Section Review 16.30

16.5 Memory-Mapped Graphics 16.30
16.5.1 Mode 13h: 320 X 200, 256 Colors 16.30
16.5.2 Memory-Mapped Graphics Program 16.32
16.5.3 Section Review 16.34

16.6 Mouse Programming 16.35
16.6.1 Mouse INT 33h Functions 16.35
16.6.2 Mouse Tracking Program 16.40
16.6.3 Section Review 16.44

16.7 Chapter Summary 16.45

16.8 Programming Exercises 16.46

17 Expert MS-DOS Programming 17.1
17.1 Introduction 17.1

17.2 Defining Segments 17.2
17.2.1 Simplified Segment Directives 17.2
17.2.2 Explicit Segment Definitions 17.4
17.2.3 Segment Overrides 17.7
17.2.4 Combining Segments 17.7
17.2.5 Section Review 17.9

17.3 Runtime Program Structure 17.9
17.3.1 Program Segment Prefix 17.10
17.3.2 COM Programs 17.10
17.3.3 EXE Programs 17.11
17.3.4 Section Review 17.13

17.4 Interrupt Handling 17.13
17.4.1 Hardware Interrupts 17.14
17.4.2 Interrupt Control Instructions 17.16
17.4.3 Writing a Custom Interrupt Handler 17.16
17.4.4 Terminate and Stay Resident Programs 17.19
17.4.5 Application: The No_Reset Program 17.19
17.4.6 Section Review 17.23

17.5 Hardware Control Using I/O Ports 17.23
17.5.1 Input–Output Ports 17.24
17.5.2 PC Sound Program 17.24

17.6 Chapter Summary 17.26

Contents xxi

Appendix A MASM Reference 587
Appendix B The x86 Instruction Set 609
Appendix C Answers to Section Review

Questions 644

Appendices are available from the Companion Web site

Appendix D BIOS and MS-DOS Interrupts D.1
Appendix E Answers to Review Questions

(Chapters 14–17) E.1

Index 664

This page intentionally left blank

xxiii

Preface

Assembly Language for x86 Processors, Seventh Edition, teaches assembly language program-
ming and architecture for x86 and Intel64 processors. It is an appropriate text for the following
types of college courses:

• Assembly Language Programming
• Fundamentals of Computer Systems
• Fundamentals of Computer Architecture

Students use Intel or AMD processors and program with Microsoft Macro Assembler (MASM),
running on recent versions of Microsoft Windows. Although this book was originally designed as
a programming textbook for college students, it serves as an effective supplement to computer
architecture courses. As a testament to its popularity, previous editions have been translated into
numerous languages.

Emphasis of Topics This edition includes topics that lead naturally into subsequent courses
in computer architecture, operating systems, and compiler writing:

• Virtual machine concept
• Instruction set architecture
• Elementary Boolean operations
• Instruction execution cycle
• Memory access and handshaking
• Interrupts and polling
• Hardware-based I/O
• Floating-point binary representation

Other topics relate specially to x86 and Intel64 architecture:

• Protected memory and paging
• Memory segmentation in real-address mode
• 16-Bit interrupt handling
• MS-DOS and BIOS system calls (interrupts)
• Floating-point unit architecture and programming
• Instruction encoding

Certain examples presented in the book lend themselves to courses that occur later in a computer
science curriculum:

• Searching and sorting algorithms
• High-level language structures

xxiv Preface

• Finite-state machines
• Code optimization examples

What’s New in the Seventh Edition
In this revision, we increased the discussions of program examples early in the book, added more sup-
plemental review questions and key terms, introduced 64-bit programming, and reduced our depen-
dence on the book’s subroutine library. To be more specific, here are the details:

• Early chapters now include short sections that feature 64-bit CPU architecture and program-
ming, and we have created a 64-bit version of the book’s subroutine library named Irvine64.

• Many of the review questions and exercises have been modified, replaced, and moved from
the middle of the chapter to the end of chapters, and divided into two sections: (1) Short
answer questions, and (2) Algorithm workbench exercises. The latter exercises require the
student to write a short amount of code to accomplish a goal.

• Each chapter now has a Key Terms section, listing new terms and concepts, as well as new
MASM directives and Intel instructions.

• New programming exercises have been added, others removed, and a few existing exercises
were modified.

• There is far less dependency on the author's subroutine libraries in this edition. Students are
encouraged to call system functions themselves and use the Visual Studio debugger to step
through the programs. The Irvine32 and Irvine64 libraries are available to help students han-
dle input/output, but their use is not required.

• New tutorial videos covering essential content topics have been created by the author and
added to the Pearson website.

This book is still focused on its primary goal, to teach students how to write and debug programs at
the machine level. It will never replace a complete book on computer architecture, but it does give
students the first-hand experience of writing software in an environment that teaches them how a
computer works. Our premise is that students retain knowledge better when theory is combined with
experience. In an engineering course, students construct prototypes; in a computer architecture
course, students should write machine-level programs. In both cases, they have a memorable experi-
ence that gives them the confidence to work in any OS/machine-oriented environment.

Protected mode programming is entirely the focus of the printed chapters (1 through 13). As such,
students will create 32-bit and 64-bit programs that run under the most recent versions of Microsoft
Windows. The remaining four chapters cover 16-bit programming, and are supplied in electronic
form. These chapters cover BIOS programming, MS-DOS services, keyboard and mouse input,
video programming, and graphics. One chapter covers disk storage fundamentals. Another chapter
covers advanced DOS programming techniques.

Subroutine Libraries We supply three versions of the subroutine library that students use for
basic input/output, simulations, timing, and other useful tasks. The Irvine32 and Irvine64 libraries run
in protected mode. The 16-bit version (Irvine16.lib) runs in real-address mode and is used only by
Chapters 14 through 17. Full source code for the libraries is supplied on the companion website. The
link libraries are available only for convenience, not to prevent students from learning how to pro-
gram input–output themselves. Students are encouraged to create their own libraries.

Included Software and Examples All the example programs were tested with Microsoft
Macro Assembler Version 11.0, running in Microsoft Visual Studio 2012. In addition, batch files
are supplied that permit students to assemble and run applications from the Windows command

Preface xxv

prompt. The 32-bit C++ applications in Chapter 14 were tested with Microsoft Visual C++ .NET.
Information Updates and corrections to this book may be found at the Companion Web site, includ-
ing additional programming projects for instructors to assign at the ends of chapters.

Overall Goals
The following goals of this book are designed to broaden the student’s interest and knowledge in
topics related to assembly language:

• Intel and AMD processor architecture and programming
• Real-address mode and protected mode programming
• Assembly language directives, macros, operators, and program structure
• Programming methodology, showing how to use assembly language to create system-level

software tools and application programs
• Computer hardware manipulation
• Interaction between assembly language programs, the operating system, and other applica-

tion programs

One of our goals is to help students approach programming problems with a machine-level mind
set. It is important to think of the CPU as an interactive tool, and to learn to monitor its operation
as directly as possible. A debugger is a programmer’s best friend, not only for catching errors,
but as an educational tool that teaches about the CPU and operating system. We encourage stu-
dents to look beneath the surface of high-level languages and to realize that most programming
languages are designed to be portable and, therefore, independent of their host machines. In
addition to the short examples, this book contains hundreds of ready-to-run programs that dem-
onstrate instructions or ideas as they are presented in the text. Reference materials, such as
guides to MS-DOS interrupts and instruction mnemonics, are available at the end of the book.

Required Background The reader should already be able to program confidently in at least
one high-level programming language such as Python, Java, C, or C++. One chapter covers C++
interfacing, so it is very helpful to have a compiler on hand. I have used this book in the class-
room with majors in both computer science and management information systems, and it has
been used elsewhere in engineering courses.

Features
Complete Program Listings The Companion Web site contains supplemental learning mate-
rials, study guides, and all the source code from the book’s examples. An extensive link library
is supplied with the book, containing more than 30 procedures that simplify user input–output,
numeric processing, disk and file handling, and string handling. In the beginning stages of the
course, students can use this library to enhance their programs. Later, they can create their
own procedures and add them to the library.

Programming Logic Two chapters emphasize Boolean logic and bit-level manipulation. A
conscious attempt is made to relate high-level programming logic to the low-level details of the
machine. This approach helps students to create more efficient implementations and to better
understand how compilers generate object code.

xxvi Preface

Hardware and Operating System Concepts The first two chapters introduce basic hard-
ware and data representation concepts, including binary numbers, CPU architecture, status flags,
and memory mapping. A survey of the computer’s hardware and a historical perspective of the
Intel processor family helps students to better understand their target computer system.

Structured Programming Approach Beginning with Chapter 5, procedures and functional
decomposition are emphasized. Students are given more complex programming exercises,
requiring them to focus on design before starting to write code.

Java Bytecodes and the Java Virtual Machine In Chapters 8 and 9, the author explains the
basic operation of Java bytecodes with short illustrative examples. Numerous short examples are
shown in disassembled bytecode format, followed by detailed step-by-step explanations.

Disk Storage Concepts Students learn the fundamental principles behind the disk storage
system on MS-Windows–based systems from hardware and software points of view.

Creating Link Libraries Students are free to add their own procedures to the book’s link
library and create new libraries. They learn to use a toolbox approach to programming and to
write code that is useful in more than one program.

Macros and Structures A chapter is devoted to creating structures, unions, and macros,
which are essential in assembly language and systems programming. Conditional macros with
advanced operators serve to make the macros more professional.

Interfacing to High-Level Languages A chapter is devoted to interfacing assembly lan-
guage to C and C++. This is an important job skill for students who are likely to find jobs pro-
gramming in high-level languages. They can learn to optimize their code and see examples of
how C++ compilers optimize code.

Instructional Aids All the program listings are available on the Web. Instructors are provided
a test bank, answers to review questions, solutions to programming exercises, and a Microsoft
PowerPoint slide presentation for each chapter.

VideoNotes VideoNotes are Pearson’s new visual tool designed to teach students key pro-
gramming concepts and techniques. These short step-by-step videos demonstrate basic assembly
language concepts. VideoNotes allow for self-paced instruction with easy navigation including
the ability to select, play, rewind, fast-forward, and stop within each VideoNote exercise.

VideoNotes are free with the purchase of a new textbook. To purchase access to VideoNotes,
go to www.pearsonhighered.com/irvine and click on the VideoNotes under Student Resources.

Chapter Descriptions
Chapters 1 to 8 contain core concepts of assembly language and should be covered in sequence.
After that, you have a fair amount of freedom. The following chapter dependency graph shows
how later chapters depend on knowledge gained from other chapters.

www.pearsonhighered.com/irvine

Preface xxvii

1. Basic Concepts: Applications of assembly language, basic concepts, machine language, and data
representation.

2. x86 Processor Architecture: Basic microcomputer design, instruction execution cycle, x86
processor architecture, Intel64 architecture, x86 memory management, components of a
microcomputer, and the input–output system.

3. Assembly Language Fundamentals: Introduction to assembly language, linking and
debugging, and defining constants and variables.

4. Data Transfers, Addressing, and Arithmetic: Simple data transfer and arithmetic instructions,
assemble-link-execute cycle, operators, directives, expressions, JMP and LOOP instructions, and
indirect addressing.

5. Procedures: Linking to an external library, description of the book’s link library, stack oper-
ations, defining and using procedures, flowcharts, and top-down structured design.

6. Conditional Processing: Boolean and comparison instructions, conditional jumps and
loops, high-level logic structures, and finite-state machines.

7. Integer Arithmetic: Shift and rotate instructions with useful applications, multiplication
and division, extended addition and subtraction, and ASCII and packed decimal arithmetic.

8. Advanced Procedures: Stack parameters, local variables, advanced PROC and INVOKE
directives, and recursion.

9. Strings and Arrays: String primitives, manipulating arrays of characters and integers, two-
dimensional arrays, sorting, and searching.

10. Structures and Macros: Structures, macros, conditional assembly directives, and defining
repeat blocks.

11. MS-Windows Programming: Protected mode memory management concepts, using the
Microsoft-Windows API to display text and colors, and dynamic memory allocation.

12. Floating-Point Processing and Instruction Encoding: Floating-point binary representa-
tion and floating-point arithmetic. Learning to program the IA-32 floating-point unit. Under-
standing the encoding of IA-32 machine instructions.

13. High-Level Language Interface: Parameter passing conventions, inline assembly code, and
linking assembly language modules to C and C++ programs.

• Appendix A: MASM Reference
• Appendix B: The x86 Instruction Set
• Appendix C: Answers to Review Questions

1 through 9

10

11 12 13 14 16 17

15

xxviii Preface

The following chapters and appendices are supplied online at the Companion Web site:

14. 16-Bit MS-DOS Programming: Memory organization, interrupts, function calls, and stan-
dard MS-DOS file I/O services.

15. Disk Fundamentals: Disk storage systems, sectors, clusters, directories, file allocation
tables, handling MS-DOS error codes, and drive and directory manipulation.

16. BIOS-Level Programming: Keyboard input, video text, graphics, and mouse programming.
17. Expert MS-DOS Programming: Custom-designed segments, runtime program structure,

and Interrupt handling. Hardware control using I/O ports.

• Appendix D: BIOS and MS-DOS Interrupts
• Appendix E: Answers to Review Questions (Chapters 14–17)

Instructor and Student Resources
Instructor Resource Materials
The following protected instructor material is available on the Companion Web site:

www.pearsonhighered.com/irvine

For username and password information, please contact your Pearson Representative.

• Lecture PowerPoint Slides
• Instructor Solutions Manual

Student Resource Materials
The student resource materials can be accessed through the publisher’s Web site located at
www.pearsonhighered.com/irvine. These resources include:

• VideoNotes
• Online Chapters and Appendices

• Chapter 14: 16-Bit MS-DOS Programming
• Chapter 15: Disk Fundamentals
• Chapter 16: BIOS-Level Programming
• Chapter 17: Expert MS-DOS Programming
• Appendix D: BIOS and MS-DOS Interrupts
• Appendix E: Answers to Review Questions (Chapters 14–17)

Students must use the access card located in the front of the book to register and access the online chap-
ters and VideoNotes. If there is no access card in the front of this textbook, students can purchase access
by going to www.pearsonhighered.com/irvine and selecting “Video Notes and Web Chapters.” Instruc-
tors must also register on the site to access this material. Students will also find a link to the author’s Web
site. An access card is not required for the following materials, located at www.asmirvine.com:

• Getting Started, a comprehensive step-by-step tutorial that helps students customize Visual
Studio for assembly language programming.

• Supplementary articles on assembly language programming topics.
• Complete source code for all example programs in the book, as well as the source code for

the author’s supplementary library.

www.pearsonhighered.com/irvine
www.pearsonhighered.com/irvine
www.pearsonhighered.com/irvine
www.asmirvine.com

Preface xxix

• Assembly Language Workbook, an interactive workbook covering number conversions, address-
ing modes, register usage, debug programming, and floating-point binary numbers. Content
pages are HTML documents to allow for customization. Help File in Windows Help Format.

• Debugging Tools: Tutorials on using the Microsoft Visual Studio debugger.

Acknowledgments
Many thanks are due to Tracy Johnson, Executive Editor for Computer Science at Pearson Edu-
cation, who has provided friendly, helpful guidance over the past few years. Pavithra Jayapaul of
Jouve did an excellent job on the book production, along with Greg Dulles as the production
editor at Pearson.

Previous Editions
I offer my special thanks to the following individuals who were most helpful during the develop-
ment of earlier editions of this book:

• William Barrett, San Jose State University
• Scott Blackledge
• James Brink, Pacific Lutheran University
• Gerald Cahill, Antelope Valley College
• John Taylor

This page intentionally left blank

xxxi

About the Author
Kip Irvine has written five computer programming textbooks, for Intel Assembly Language,
C++, Visual Basic (beginning and advanced), and COBOL. His book Assembly Language for
Intel-Based Computers has been translated into six languages. His first college degrees (B.M.,
M.M., and doctorate) were in Music Composition, at University of Hawaii and University
of Miami. He began programming computers for music synthesis around 1982 and taught pro-
gramming at Miami-Dade Community College for 17 years. Kip earned an M.S. degree in Com-
puter Science from the University of Miami, and he has been a full-time member of the faculty
in the School of Computing and Information Sciences at Florida International University since
2000.

This page intentionally left blank

1

1
Basic Concepts

1.1 Welcome to Assembly Language
1.1.1 Questions You Might Ask
1.1.2 Assembly Language Applications
1.1.3 Section Review

1.2 Virtual Machine Concept
1.2.1 Section Review

1.3 Data Representation
1.3.1 Binary Integers
1.3.2 Binary Addition
1.3.3 Integer Storage Sizes
1.3.4 Hexadecimal Integers
1.3.5 Hexadecimal Addition
1.3.6 Signed Binary Integers

1.3.7 Binary Subtraction
1.3.8 Character Storage
1.3.9 Section Review

1.4 Boolean Expressions
1.4.1 Truth Tables for Boolean Functions
1.4.2 Section Review

1.5 Chapter Summary
1.6 Key Terms
1.7 Review Questions and Exercises

1.7.1 Short Answer
1.7.2 Algorithm Workbench

This chapter establishes some core concepts relating to assembly language programming. For
example, it shows how assembly language fits into the wide spectrum of languages and applica-
tions. We introduce the virtual machine concept, which is so important in understanding the rela-
tionship between software and hardware layers. A large part of the chapter is devoted to the
binary and hexadecimal numbering systems, showing how to perform conversions and do basic
arithmetic. Finally, this chapter introduces fundamental boolean operations (AND, OR, NOT,
XOR), which will prove to be essential in later chapters.

1.1 Welcome to Assembly Language
Assembly Language for x86 Processors focuses on programming microprocessors compatible
with Intel and AMD processors running under 32-bit and 64-bit versions of Microsoft Windows.

2 Chapter 1 • Basic Concepts

The latest version of Microsoft Macro Assembler (known as MASM) should be used with this
book. MASM is included with most versions of Microsoft Visual Studio (Pro, Ultimate,
Express, . . .). Please check our web site (asmirvine.com) for the latest details about support for
MASM in Visual Studio. We also include lots of helpful information about how to set up your
software and get started.

Some other well-known assemblers for x86 systems running under Microsoft Windows
include TASM (Turbo Assembler), NASM (Netwide Assembler), and MASM32 (a variant of
MASM). Two popular Linux-based assemblers are GAS (GNU assembler) and NASM. Of
these, NASM’s syntax is most similar to that of MASM.

Assembly language is the oldest programming language, and of all languages, bears the
closest resemblance to native machine language. It provides direct access to computer hard-
ware, requiring you to understand much about your computer’s architecture and operating
system.

Educational Value Why read this book? Perhaps you’re taking a college course whose title is
similar to one of the following courses that often use our book:

• Microcomputer Assembly Language
• Assembly Language Programming
• Introduction to Computer Architecture
• Fundamentals of Computer Systems
• Embedded Systems Programming

This book will help you learn basic principles about computer architecture, machine lan-
guage, and low-level programming. You will learn enough assembly language to test your
knowledge on today’s most widely used microprocessor family. You won’t be learning to pro-
gram a “toy” computer using a simulated assembler; MASM is an industrial-strength assembler,
used by practicing professionals. You will learn the architecture of the Intel processor family
from a programmer’s point of view.

If you are planning to be a C or C++ developer, you need to develop an understanding of how
memory, address, and instructions work at a low level. A lot of programming errors are not eas-
ily recognized at the high-level language level. You will often find it necessary to “drill down”
into your program’s internals to find out why it isn’t working.

If you doubt the value of low-level programming and studying details of computer software
and hardware, take note of the following quote from a leading computer scientist, Donald Knuth,
in discussing his famous book series, The Art of Computer Programming:

Some people [say] that having machine language, at all, was the great mistake that I made.
I really don’t think you can write a book for serious computer programmers unless you are
able to discuss low-level detail.1

Visit this book’s web site to get lots of supplemental information, tutorials, and exercises at
www.asmirvine.com

www.asmirvine.com

1.1 Welcome to Assembly Language 3

1.1.1 Questions You Might Ask

What Background Should I Have? Before reading this book, you should have programmed
in at least one structured high-level language, such as Java, C, Python, or C++. You should know
how to use IF statements, arrays, and functions to solve programming problems.

What Are Assemblers and Linkers? An assembler is a utility program that converts source
code programs from assembly language into machine language. A linker is a utility program that com-
bines individual files created by an assembler into a single executable program. A related utility, called a
debugger, lets you to step through a program while it’s running and examine registers and memory.

What Hardware and Software Do I Need? You need a computer that runs a 32-bit or 64-bit
version of Microsoft Windows, along with one of the recent versions of Microsoft Visual Studio.

What Types of Programs Can Be Created Using MASM?

• 32-Bit Protected Mode: 32-bit protected mode programs run under all 32-bit versions of
Microsoft Windows. They are usually easier to write and understand than real-mode pro-
grams. From now on, we will simply call this 32-bit mode.

• 64-Bit Mode: 64-bit programs run under all 64-bit versions of Microsoft Windows.
• 16-Bit Real-Address Mode: 16-bit programs run under 32-bit versions of Windows and on

embedded systems. Because they are not supported by 64-bit Windows, we will restrict dis-
cussions of this mode to Chapters 14 through 17. These chapters are in electronic form, avail-
able from the publisher’s web site.

What Supplements Are Supplied with This Book? The book’s web site (www.asmirvine.com)
has the following:

• Assembly Language Workbook, a collection of tutorials
• Irvine32, Irvine64, and Irvine16 subroutine libraries for 64-bit, 32-bit, and 16-bit program-

ming, with complete source code
• Example programs with all source code from the book
• Corrections to the book
• Getting Started, a detailed tutorial designed to help you set up Visual Studio to use the

Microsoft assembler
• Articles on advanced topics not included in the printed book for lack of space
• A link to an online discussion forum, where you can get help from other experts who use the book

What Will I Learn? This book should make you better informed about data representation,
debugging, programming, and hardware manipulation. Here’s what you will learn:

• Basic principles of computer architecture as applied to x86 processors
• Basic boolean logic and how it applies to programming and computer hardware
• How x86 processors manage memory, using protected mode and virtual mode
• How high-level language compilers (such as C++) translate statements from their language

into assembly language and native machine code

www.asmirvine.com

4 Chapter 1 • Basic Concepts

• How high-level languages implement arithmetic expressions, loops, and logical structures at
the machine level

• Data representation, including signed and unsigned integers, real numbers, and character data
• How to debug programs at the machine level. The need for this skill is vital when you work in

languages such as C and C++, which generate native machine code
• How application programs communicate with the computer’s operating system via interrupt

handlers and system calls
• How to interface assembly language code to C++ programs
• How to create assembly language application programs

How Does Assembly Language Relate to Machine Language? Machine language is a
numeric language specifically understood by a computer’s processor (the CPU). All x86 processors
understand a common machine language. Assembly language consists of statements written with
short mnemonics such as ADD, MOV, SUB, and CALL. Assembly language has a one-to-one rela-
tionship with machine language: Each assembly language instruction corresponds to a
single machine-language instruction.

How Do C++ and Java Relate to Assembly Language? High-level languages such as
Python, C++, and Java have a one-to-many relationship with assembly language and machine
language. A single statement in C++, for example, expands into multiple assembly language or
machine instructions. Most people cannot read raw machine code, so in this book, we examine
its closest relative, assembly language. For example, the following C++ code carries out two
arithmetic operations and assigns the result to a variable. Assume X and Y are integers:

int Y;
int X = (Y + 4) * 3;

Following is the equivalent translation to assembly language. The translation requires multiple
statements because each assembly language statement corresponds to a single machine instruction:

mov eax,Y ; move Y to the EAX register
add eax,4 ; add 4 to the EAX register
mov ebx,3 ; move 3 to the EBX register
imul ebx ; multiply EAX by EBX
mov X,eax ; move EAX to X

(Registers are named storage locations in the CPU that hold intermediate results of operations.)
The point of this example is not to claim that C++ is superior to assembly language or vice
versa, but to show their relationship.

Is Assembly Language Portable? A language whose source programs can be compiled and
run on a wide variety of computer systems is said to be portable. A C++ program, for example,
will compile and run on just about any computer, unless it makes specific references to library
functions that exist under a single operating system. A major feature of the Java language is that
compiled programs run on nearly any computer system.

Assembly language is not portable, because it is designed for a specific processor family. There
are a number of different assembly languages widely used today, each based on a processor family.

1.1 Welcome to Assembly Language 5

Some well-known processor families are Motorola 68x00, x86, SUN Sparc, Vax, and IBM-370.
The instructions in assembly language may directly match the computer’s architecture or they may
be translated during execution by a program inside the processor known as a microcode interpreter.

Why Learn Assembly Language? If you’re still not convinced that you should learn assembly
language, consider the following points:

• If you study computer engineering, you may likely be asked to write embedded programs.
They are short programs stored in a small amount of memory in single-purpose devices such
as telephones, automobile fuel and ignition systems, air-conditioning control systems, secu-
rity systems, data acquisition instruments, video cards, sound cards, hard drives, modems,
and printers. Assembly language is an ideal tool for writing embedded programs because of
its economical use of memory.

• Real-time applications dealing with simulation and hardware monitoring require precise
timing and responses. High-level languages do not give programmers exact control over
machine code generated by compilers. Assembly language permits you to precisely specify a
program’s executable code.

• Computer game consoles require their software to be highly optimized for small code size and fast
execution. Game programmers are experts at writing code that takes full advantage of hardware
features in a target system. They often use assembly language as their tool of choice because it
permits direct access to computer hardware, and code can be hand optimized for speed.

• Assembly language helps you to gain an overall understanding of the interaction between
computer hardware, operating systems, and application programs. Using assembly language,
you can apply and test theoretical information you are given in computer architecture and
operating systems courses.

• Some high-level languages abstract their data representation to the point that it becomes awk-
ward to perform low-level tasks such as bit manipulation. In such an environment, program-
mers will often call subroutines written in assembly language to accomplish their goal.

• Hardware manufacturers create device drivers for the equipment they sell. Device drivers
are programs that translate general operating system commands into specific references to
hardware details. Printer manufacturers, for example, create a different MS-Windows device
driver for each model they sell. Often these device drivers contain significant amounts of
assembly language code.

Are There Rules in Assembly Language? Most rules in assembly language are based on
physical limitations of the target processor and its machine language. The CPU, for example,
requires two instruction operands to be the same size. Assembly language has fewer rules than
C++ or Java because the latter use syntax rules to reduce unintended logic errors at the expense
of low-level data access. Assembly language programmers can easily bypass restrictions charac-
teristic of high-level languages. Java, for example, does not permit access to specific memory
addresses. One can work around the restriction by calling a C function using JNI (Java Native
Interface) classes, but the resulting program can be awkward to maintain. Assembly language,
on the other hand, can access any memory address. The price for such freedom is high: Assem-
bly language programmers spend a lot of time debugging!

6 Chapter 1 • Basic Concepts

1.1.2 Assembly Language Applications
In the early days of programming, most applications were written partially or entirely in assem-
bly language. They had to fit in a small area of memory and run as efficiently as possible on slow
processors. As memory became more plentiful and processors dramatically increased in speed,
programs became more complex. Programmers switched to high-level languages such as C,
FORTRAN, and COBOL that contained a certain amount of structuring capability. More
recently, object-oriented languages such as Python, C++, C#, and Java have made it possible to
write complex programs containing millions of lines of code.

It is rare to see large application programs coded completely in assembly language because
they would take too much time to write and maintain. Instead, assembly language is used to opti-
mize certain sections of application programs for speed and to access computer hardware.
Table 1-1 compares the adaptability of assembly language to high-level languages in relation to
various types of applications.

The C and C++ languages have the unique quality of offering a compromise between high-
level structure and low-level details. Direct hardware access is possible but completely nonport-
able. Most C and C++ compilers allow you to embed assembly language statements in their
code, providing access to hardware details.

1.1.3 Section Review
1. How do assemblers and linkers work together?

2. How will studying assembly language enhance your understanding of operating systems?

Table 1-1 Comparison of Assembly Language to High-Level Languages.

Type of Application High-Level Languages Assembly Language

Commercial or scientific appli-
cation, written for single plat-
form, medium to large size.

Formal structures make it easy to orga-
nize and maintain large sections of
code.

Minimal formal structure, so one
must be imposed by programmers
who have varying levels of experi-
ence. This leads to difficulties main-
taining existing code.

Hardware device driver. The language may not provide for direct
hardware access. Even if it does, awk-
ward coding techniques may be required,
resulting in maintenance difficulties.

Hardware access is straightforward and
simple. Easy to maintain when pro-
grams are short and well documented.

Commercial or scientific appli-
cation written for multiple
platforms (different operating
systems).

Usually portable. The source code can
be recompiled on each target operating
system with minimal changes.

Must be recoded separately for each
platform, using an assembler with a
different syntax. Difficult to maintain.

Embedded systems and com-
puter games requiring direct
hardware access.

May produce large executable files that
exceed the memory capacity of the
device.

Ideal, because the executable code is
small and runs quickly.

1.2 Virtual Machine Concept 7

3. What is meant by a one-to-many relationship when comparing a high-level language to
machine language?

4. Explain the concept of portability as it applies to programming languages.

5. Is the assembly language for x86 processors the same as those for computer systems such as
the Vax or Motorola 68x00?

6. Give an example of an embedded systems application.

7. What is a device driver?

8. Do you suppose type checking on pointer variables is stronger (stricter) in assembly lan-
guage, or in C and C++?

9. Name two types of applications that would be better suited to assembly language than a
high-level language.

10. Why would a high-level language not be an ideal tool for writing a program that directly
accesses a printer port?

11. Why is assembly language not usually used when writing large application programs?

12. Challenge: Translate the following C++ expression to assembly language, using the example
presented earlier in this chapter as a guide: X ϭ (Y * 4) ϩ 3.

1.2 Virtual Machine Concept
An effective way to explain how a computer’s hardware and software are related is called the
virtual machine concept. A well-known explanation of this model can be found in Andrew
Tanenbaum’s book, Structured Computer Organization. To explain this concept, let us begin
with the most basic function of a computer, executing programs.

A computer can usually execute programs written in its native machine language. Each
instruction in this language is simple enough to be executed using a relatively small number of
electronic circuits. For simplicity, we will call this language L0.

Programmers would have a difficult time writing programs in L0 because it is enormously
detailed and consists purely of numbers. If a new language, L1, could be constructed that was
easier to use, programs could be written in L1. There are two ways to achieve this:

• Interpretation: As the L1 program is running, each of its instructions could be decoded and
executed by a program written in language L0. The L1 program begins running immediately,
but each instruction has to be decoded before it can execute.

• Translation: The entire L1 program could be converted into an L0 program by an L0 program
specifically designed for this purpose. Then the resulting L0 program could be executed
directly on the computer hardware.

Virtual Machines
Rather than using only languages, it is easier to think in terms of a hypothetical computer, or vir-
tual machine, at each level. Informally, we can define a virtual machine as a software program
that emulates the functions of some other physical or virtual computer. The virtual machine

8 Chapter 1 • Basic Concepts

VM1, as we will call it, can execute commands written in language L1. The virtual machine
VM0 can execute commands written in language L0:

Each virtual machine can be constructed of either hardware or software. People can write pro-
grams for virtual machine VM1, and if it is practical to implement VM1 as an actual computer,
programs can be executed directly on the hardware. Or programs written in VM1 can be inter-
preted/translated and executed on machine VM0.

Machine VM1 cannot be radically different from VM0 because the translation or interpreta-
tion would be too time-consuming. What if the language VM1 supports is still not programmer-
friendly enough to be used for useful applications? Then another virtual machine, VM2, can be
designed that is more easily understood. This process can be repeated until a virtual machine
VMn can be designed to support a powerful, easy-to-use language.

The Java programming language is based on the virtual machine concept. A program written
in the Java language is translated by a Java compiler into Java byte code. The latter is a low-level
language quickly executed at runtime by a program known as a Java virtual machine (JVM). The
JVM has been implemented on many different computer systems, making Java programs rela-
tively system independent.

Specific Machines
Let us relate this to actual computers and languages, using names such as Level 2 for VM2 and Level 1
for VM1, shown in Figure 1-1. A computer’s digital logic hardware represents machine Level 1. Above
this is Level 2, called the instruction set Architecture (ISA). This is the first level at which users can typi-
cally write programs, although the programs consist of binary values called machine language.

Instruction Set Architecture (Level 2) Computer chip manufacturers design into the proces-
sor an instruction set to carry out basic operations, such as move, add, or multiply. This set of
instructions is also referred to as machine language. Each machine-language instruction is exe-
cuted either directly by the computer’s hardware or by a program embedded in the microprocessor
chip called a microprogram. A discussion of microprograms is beyond the scope of this book, but
you can refer to Tanenbaum for more details.

Assembly Language (Level 3) Above the ISA level, programming languages provide trans-
lation layers to make large-scale software development practical. Assembly language, which
appears at Level 3, uses short mnemonics such as ADD, SUB, and MOV, which are easily trans-
lated to the ISA level. Assembly language programs are translated (assembled) in their entirety
into machine language before they begin to execute.

Virtual Machine VM0

Virtual Machine VM1

1.3 Data Representation 9

Figure 1–1 Virtual machine levels.

High-Level Languages (Level 4) At Level 4 are high-level programming languages such as
C, C++, and Java. Programs in these languages contain powerful statements that translate into
multiple assembly language instructions. You can see such a translation, for example, by exam-
ining the listing file output created by a C++ compiler. The assembly language code is automati-
cally assembled by the compiler into machine language.

1.2.1 Section Review
1. In your own words, describe the virtual machine concept.

2. Why do you suppose translated programs often execute more quickly than interpreted ones?

3. (True/False): When an interpreted program written in language L1 runs, each of its instruc-
tions is decoded and executed by a program written in language L0.

4. Explain the importance of translation when dealing with languages at different virtual
machine levels.

5. At which level does assembly language appear in the virtual machine example shown in this
section?

6. What software utility permits compiled Java programs to run on almost any computer?

7. Name the four virtual machine levels named in this section, from lowest to highest.

8. Why don’t programmers write applications in machine language?

9. Machine language is used at which level of the virtual machine shown in Figure 1-1?

10. Statements at the assembly language level of a virtual machine are translated into state-
ments at which other level?

1.3 Data Representation
Assembly language programmers deal with data at the physical level, so they must be adept at
examining memory and registers. Often, binary numbers are used to describe the contents of
computer memory; at other times, decimal and hexadecimal numbers are used. You must develop

Assembly language

Instruction set
architecture (ISA)

Digital logicLevel 1

Level 2

Level 3

Level 4 High-level language

